519 research outputs found

    Entanglement distribution and quantum discord

    Full text link
    Establishing entanglement between distant parties is one of the most important problems of quantum technology, since long-distance entanglement is an essential part of such fundamental tasks as quantum cryptography or quantum teleportation. In this lecture we review basic properties of entanglement and quantum discord, and discuss recent results on entanglement distribution and the role of quantum discord therein. We also review entanglement distribution with separable states, and discuss important problems which still remain open. One such open problem is a possible advantage of indirect entanglement distribution, when compared to direct distribution protocols.Comment: 7 pages, 2 figures, contribution to "Lectures on general quantum correlations and their applications", edited by Felipe Fanchini, Diogo Soares-Pinto, and Gerardo Adess

    Entanglement and coherence in quantum state merging

    Get PDF
    Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging where two parties aim to merge their parts of a tripartite quantum state. In standard quantum state merging, entanglement is considered as an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process, and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum, and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.Comment: 9 pages, 1 figure. Lemma 5 in Appendix D of the previous version was not correct. This did not affect the results of the main tex

    Quantum cost for sending entanglement

    Full text link
    Establishing quantum entanglement between two distant parties is an essential step of many protocols in quantum information processing. One possibility for providing long-distance entanglement is to create an entangled composite state within a lab and then physically send one subsystem to a distant lab. However, is this the "cheapest" way? Here, we investigate the minimal "cost" that is necessary for establishing a certain amount of entanglement between two distant parties. We prove that this cost is intrinsically quantum, and is specified by quantum correlations. Our results provide an optimal protocol for entanglement distribution and show that quantum correlations are the essential resource for this task.Comment: Added a reference to the related article arXiv:1203.1268 by T. K. Chuan et a

    Easy implementable algorithm for the geometric measure of entanglement

    Full text link
    We present an easy implementable algorithm for approximating the geometric measure of entanglement from above. The algorithm can be applied to any multipartite mixed state. It involves only the solution of an eigenproblem and finding a singular value decomposition, no further numerical techniques are needed. To provide examples, the algorithm was applied to the isotropic states of 3 qubits and the 3-qubit XX model with external magnetic field.Comment: 9 pages, 3 figure

    Concentrating tripartite quantum information

    Get PDF
    We introduce the concentrated information of tripartite quantum states. For three parties Alice, Bob, and Charlie, it is defined as the maximal mutual information achievable between Alice and Charlie via local operations and classical communication performed by Charlie and Bob. We derive upper and lower bounds to the concentrated information, and obtain a closed expression for it on several classes of states including arbitrary pure tripartite states in the asymptotic setting. We show that distillable entanglement, entanglement of assistance, and quantum discord can all be expressed in terms of the concentrated information, thus revealing its role as a unifying informational primitive. We finally investigate quantum state merging of mixed states with and without additional entanglement. The gap between classical and quantum concentrated information is proven to be an operational figure of merit for mixed state merging in absence of additional entanglement. Contrary to pure state merging, our analysis shows that classical communication in both directions can provide advantage for merging of mixed states

    Progress towards a unified approach to entanglement distribution

    Get PDF
    Entanglement distribution is key to the success of secure communication schemes based on quantum mechanics, and there is a strong need for an ultimate architecture able to overcome the limitations of recent proposals such as those based on entanglement percolation or quantum repeaters. In this work we provide broad theoretical background for the development of such technologies. In particular, we investigate the question of whether entanglement distribution is more efficient if some amount of entanglement -- or some amount of correlations in general -- is available prior to the transmission stage of the protocol. We show that in the presence of noise the answer to this question strongly depends on the type of noise and on the way how entanglement is quantified. On the one hand, subadditive entanglement measures do not show advantage of preshared correlations if entanglement is established via combinations of single-qubit Pauli channels. On the other hand, based on the superadditivity conjecture of distillable entanglement, we provide evidence that this phenomenon occurs for this measure. These results strongly suggest that sending one half of some pure entangled state down a noisy channel is the best strategy for any subadditive entanglement quantifier, thus paving the way to a unified approach for entanglement distribution which does not depend on the nature of noise. We also provide general bounds for entanglement distribution involving quantum discord, and present a counter-intuitive phenomenon of the advantage of arbitrarily little entangled states over maximally entangled ones, which may also occur for quantum channels relevant in experiments.Comment: 15 pages, 5 figures, 1 table, published versio

    Measuring quantum coherence with entanglement

    Get PDF
    Quantum coherence is an essential ingredient in quantum information processing and plays a central role in emergent fields such as nanoscale thermodynamics and quantum biology. However, our understanding and quantitative characterization of coherence as an operational resource are still very limited. Here we show that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. This finding allows us to define a novel general class of measures of coherence for a quantum system of arbitrary dimension, in terms of the maximum bipartite entanglement that can be generated via incoherent operations applied to the system and an incoherent ancilla. The resulting measures are proven to be valid coherence monotones satisfying all the requirements dictated by the resource theory of quantum coherence. We demonstrate the usefulness of our approach by proving that the fidelity-based geometric measure of coherence is a full convex coherence monotone, and deriving a closed formula for it on arbitrary single-qubit states. Our work provides a clear quantitative and operational connection between coherence and entanglement, two landmark manifestations of quantum theory and both key enablers for quantum technologies

    Quantifying nonclassicality: global impact of local unitary evolutions

    Full text link
    We show that only those composite quantum systems possessing nonvanishing quantum correlations have the property that any nontrivial local unitary evolution changes their global state. We derive the exact relation between the global state change induced by local unitary evolutions and the amount of quantum correlations. We prove that the minimal change coincides with the geometric measure of discord (defined via the Hilbert- Schmidt norm), thus providing the latter with an operational interpretation in terms of the capability of a local unitary dynamics to modify a global state. We establish that two-qubit Werner states are maximally quantum correlated, and are thus the ones that maximize this type of global quantum effect. Finally, we show that similar results hold when replacing the Hilbert-Schmidt norm with the trace norm.Comment: 5 pages, 1 figure. To appear in Physical Review

    Orbitally induced hierarchy of exchange interactions in zigzag antiferromagnetic state of honeycomb silver delafossite Ag3Co2SbO6

    Full text link
    We report the revised crystal structure, static and dynamic magnetic properties of quasi-two dimensional honeycomb-lattice silver delafossite Ag3Co2SbO6. The magnetic susceptibility and specific heat data are consistent with the onset of antiferromagnetic long range order at low temperatures with N\'eel temperature TN ~ 21.2 K. In addition, the magnetization curves revealed a field-induced (spin-flop type) transition below TN in moderate magnetic fields. The GGA+U calculations show the importance of the orbital degrees of freedom, which maintain a hierarchy of exchange interaction in the system. The strongest antiferromagnetic exchange coupling was found in the shortest Co-Co pairs and is due to direct and superexchange interactions between the half-filled xz+yz orbitals pointing directly to each other. The other four out of six nearest neighbor exchanges within the cobalt hexagon are suppressed, since for these bonds active half-filled orbitals turned out to be parallel and do not overlap. The electron spin resonance (ESR) spectra reveal a Gaussian shape line attributed to Co2+ ion in octahedral coordination with average effective g-factor g=2.3+/-0.1 at room temperature and shows strong divergence of ESR parameters below 120 K, which imply an extended region of short-range correlations. Based on the results of magnetic and thermodynamic studies in applied fields, we propose the magnetic phase diagram for the new honeycomb-lattice delafossite
    corecore